
Pythons and Martians and Finches, Oh My!
Lessons Learned from a Mandatory 8th Grade Python Class

Amal Nanavati∗
amaln@cs.uw.edu

University of Washington
Seattle, Washington

Aileen Owens
amowens@southfayette.org
South Fayette School District
South Fayette, Pennsylvania

Mark Stehlik
mjs@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania

ABSTRACT
As computing technologies continue to have a greater impact on
daily life, it becomes increasingly important for the K-12 educa-
tion system to prepare students for the computerized world. In
this paper, we present the curriculum design, implementation, and
results from a one-trimester introductory Python course that is
mandatory for all 8th graders in our school district. This course is
a crucial component of the K-12 computational thinking pathways
we are developing at our school district, which take students from
block-based programming and computational thinking (elementary
school) to text-based programming and applications of computer
science (high school). Our mandatory 8th grade course serves as a
bridge between these two components. We present qualitative re-
sults that highlight the challenges that arose from teaching a course
for all students – not just those with a prior interest in computing –
and how the instructor overcame those challenges. We also present
quantitative results that demonstrate the course’s positive impact
on students’ attitudes towards computer science, their intent to
re-engage with computer science in the future, and the gender gap
with regards to confidence in computer science.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
Model curricula; Computing literacy; K-12 education.

KEYWORDS
K-12 computer science education, computational thinking, robotics

ACM Reference Format:
Amal Nanavati, Aileen Owens, and Mark Stehlik. 2020. Pythons and Mar-
tians and Finches, Oh My! Lessons Learned from a Mandatory 8th Grade
Python Class. In The 51st ACM Technical Symposium on Computer Science
Education (SIGCSE ’20), March 11–14, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366906

∗Research conducted while at Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366906

1 INTRODUCTION AND PRIORWORK
As computing becomes woven into the economic, political, and
social fabric of our lives, it becomes increasingly important for the
K-12 education system to teach students computer science (CS) and
computational thinking (CT) skills. There have been many efforts
to integrate block-based programming into elementary schools
and there are multiple text-based programming courses in high
schools, but there are few explicitly designed transitions between
them. Further, one approach to introducing students to CS and CT
has been integrating computing activities into non-technical high
school subjects, which requires that students have some baseline
CS and CT knowledge upon entering high school. To address both
these gaps, we developed an introductory middle school Python
course, themed around Ridley Scott’s The Martian [16], and made it
mandatory for all 8th graders in our school district. The class was
intended to teach students text-based programming as well as CT
paradigms, and has been taught in our school district since 2017.
This paper presents the curriculum for the course, qualitative results
about lessons learned from teaching the course, and quantitative
results about how the course impacted students’ perceptions of CS.
Our qualitative results point to ways to overcome the difficulties of
teaching a course to all students, not just those with prior interest in
CS. Our quantitative results reveal that taking the course positively
increased students’ interest in CS and openness to re-engaging
with CS in the future, while lowering the gender gap in students’
confidence in learning CS. The course also nearly tripled the number
of 9th graders who requested high school CS elective(s).

Prior work on CS and CT courses in late-elementary or middle
school often focused on activities that occurred outside the regular
school day [2, 8, 14] or were an elective course [17]. As a result,
students opted into the programs, skewing the student population
towards those who were already interested in CS. One work investi-
gated a brief (six lesson) robotics experience for all 500 students in a
K-5 elementary school [12]. One of their findings was that students
enjoyed using the robot during unstructured time, an approach we
utilized by providing extra time for students to be creative. Another
project focused on integrating a robotics experience into various
non-technical K-12 classes [5], which resulted in all students in
the class participating in the experience. They found that students’
technical knowledge and perceptions about technology increased
along multiple scales, and that students identified teamwork as a
reason they enjoyed and learned during the lessons.

Many of the efforts to introduce CS and CT concepts in middle
school use block-based programming languages such as Scratch
[8], App Inventor [10], or Blockly [3]. Block-based programming
languages have the benefit of allowing students to learn CS and CT
concepts without worrying about complicated syntax, but have the

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

811

https://doi.org/10.1145/3328778.3366906
https://doi.org/10.1145/3328778.3366906
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3328778.3366906&domain=pdf&date_stamp=2020-02-26

drawback of not preparing students for text-based programming in
high school or beyond. Some programs began with block-based pro-
gramming and transitioned to text-based programming [1, 2, 15];
they found that teaching block-based programming first helped
increase students’ motivation and allowed them to more easily
understand concepts in the text-based programming language. In
terms of curriculum design, prior work used robots [5, 12], Holly-
wood themes [6, 8], or unplugged activities [11], to name a few. We
integrated many similar activities into our curriculum to achieve a
balance between teaching useful content, teaching conceptually ac-
cessible content, and maintaining student interest and motivation.

2 SETTING
The work described in this paper came out of a collaboration be-
tween South Fayette School District, a suburban K-12 school district,
and Carnegie Mellon University, a nearby research university in
a mid-sized American metropolitan area. Our school district has
3,318 students, divided into an elementary school (K-2), interme-
diate school (3-5), middle school (6-8), and high school (9-12). The
student body is 77% Caucasian, 2% African-American, 1% Hispanic,
16% Asian/Pacific Islander, and 4% Multiracial. In addition, 12%
of students are eligible for free and reduced lunch, 8% qualify for
special education, and 1% are English language learners.

Our school district has defined computational thinking as a new
literacy for all students. Over the last nine years, we have worked to
embed computational thinking, project-based learning, and human-
centered design thinking into our K-12 curricula. In elementary and
middle school, students learn to: (1) make interactive games and
mobile apps using Scratch and App Inventor; (2) explore deeper
learning in math and science using Lego EV3, VEX IQ, and Arduino
boards; and (3) explore electrical circuitry using Squishy Circuits,
LittleBits, and MaKey MaKey. From 9th-12th grade, students can
take Python, Java, AP CS Principles, and/or AP CS A courses as
electives. However, we have noticed a gap between the K-8 block-
based programming and the 9-12 text-based programming, which
negatively impacts students’ attitudes towards, and willingness to
engage with, CS in high school. Further, we would like to expand
our K-12 computational thinking pathway by integrating comput-
ing into non-technical high-school courses. The 8th grade Python
course we present was created to address both needs.

The 8th grade Python course was initially created by Teknowl-
edge, a CS educational outreach student group at Carnegie Mellon
University, and taught as an after-school incubator course at South
Fayette School District in Spring 2016. Incubator courses are an
important part of our school district’s computational thinking path-
way, since they allow us to test new ideas and leverage external
talent in lower-stakes environments where only interested students
take the course. We then worked with members of the school dis-
trict to perfect and adapt the curriculum to fit into a one trimester
course (30-days in a block schedule) for all students. This course
has been taught as a mandatory 8th grade course since 2017, with
roughly 25 students per class and 270 per year. After each trimester,
we worked with the teacher and school district to further adapt the
course to student needs and interests. This paper focuses on the
course as it was offered at the end of the 2019 school year, and the
results of student pre- and post-surveys from the 2018-2019 year.

Figure 1: Left: In “People Pathing,” one student closes their
eyes while the other gives them specific instructions – as if
they were instructing a robot – to follow a path. Right: In
“Catch theBug,” students are given a printout of Python code
and have to fix the code as well as predict what it will do.

3 CURRICULUM DESIGN
The goal of this one-trimester course (30 classes, 40 minutes per
class) is to provide students with baseline text-based programming
and CT skills to enable them to effectively utilize CS in high school.
Therefore, it covers (in order): printing, strings, string manipulation,
variables, numbers, user input, mathematical operators, condition-
als (if-elif-else), and iteration (while and for loops). The course also
covers many Computer Science Teachers Associationmiddle-school
standards1. Each class begins with a brief period of instruction,
followed by guided practice. During guided practice, the teacher
interactively writes code on her computer (connected to a projector)
while students follow along on their computers. Each class ends
with students working on challenges or activities. The class has
no required homework, and students are encouraged to meet with
teachers for extra help during a flexible study hall period.

In order to expose students to the diverse ways in which com-
puter code can interact with the world, the curriculum covers three
input-output modalities: the command line, turtle bots, and Finch
robots2. During the command line unit, students create Mad Libs
and a Trivia Game to share with friends. During the turtle bot unit,
students create geometric shapes and patterns and use the turtle
bot to simulate Finch robot motion. During the Finch unit, students
complete multiple realistic challenges, such as making the robot
navigate a maze. The curriculum also incorporates unplugged ac-
tivities, which help students understand key CT concepts and test
students’ abilities to read/write code without a computer (Figure 1).

The entire curriculum is themed around Ridley Scott’s The Mar-
tian [16], a story about an astronaut, Mark Watney, who gets
stranded on Mars. At the beginning of the course, students are
told that they are Watney’s tech specialists, and it is up to them
to help Watney survive. When students learn printing, they must
send messages to NASA to indicate that Watney is alive – but
they must pick their messages carefully, since they have limited
bandwidth. When they learn variables, they must create variables

1The course covers standards for Computing Systems, Data & Analysis, Algorithms
& Programming, and Impacts of Computing: 2-CS-01, 2-CS-03, 2-DA-08, 2-AP-10,
2-AP-11, 2-AP-13, 2-AP-14, 2-AP-16, 2-AP-17, 2-AP-18, 2-AP-19, 2-IC-20, 2-IC-21.
2https://www.finchrobot.com/

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

812

Figure 2: Left: A student-made geometric pattern from the
turtle bots unit. Right: Students navigate the Finch robot
through Mars’ terrain to find the lost satellite.

for quantities like the oxygen level in Watney’s settlement. When
they learn string concatenation, they must create journal entries
that document Watney’s experiences for future space travelers. For
mathematical operators, students must calculate how many pota-
toes Watney needs to survive. Students use turtle bots to create
sand patterns that could indicate to passing satellites that Watney is
alive. They use loops to print the decreasing fuel levels in Watney’s
spaceship. Finally, they use the Finch robot as Watney’s Mars rover,
to go out to retrieve the communication satellite that blew away.
But when a sandstorm occludes the rover, students must learn to
use the Finch’s lights and sounds so Watney can track it. And after
a hard day’s work, students must navigate the Finch into a cave to
park, by detecting light levels in the environment and turning on
the Finch’s light when it gets too dark. Figure 2 shows sample turtle
bot and Finch robot activities. A majority of the activities are done
in pairs, to teach students the importance of teamwork. Finally,
students are encouraged to use Code Combat3 for supplementary
instruction outside of class, if they finish their activities early, or if
there is a substitute teacher.

4 TEACHER EXPERIENCES
This course marked the first time our school district taught amanda-
tory text-based programming course, which made it new for the
teacher and students. To understand the on-the-ground experiences
of teaching the course, we held a semi-structured interview with
the teacher who taught most sections of this course since it began
in 2017. This teacher did not have prior experience with program-
ming; she learnt the necessary skills by sitting in on the incubator
course and the first trimester of the mandatory course (taught by a
high school CS teacher). The teacher felt that this class had unique
challenges since she was teaching all 8th graders as opposed to
just those who opted into the class. As a result, there was a lot
of variation in students’ abilities, their interest in CS, and their
predilection for CS concepts. This section recounts strategies the
teacher used to address challenges arising from that fact, as well as
other teacher experiences.

The teacher found that as students lost ground in the course
they began giving up, and once they gave up it was very difficult
to rekindle their interests. Therefore, the teacher worked hard to
3https://codecombat.com/

support students so they didn’t lose interest in the first place. This
included relying on study hall, a 40 minute period at the end of
the day where students could meet with any teacher they desired.
Study hall gave the teacher the chance to work with students indi-
vidually: to re-engage students who did not understand the content,
to support students who may have been too shy to raise their hand
in class, and to push students who wanted further CS enrichment.
The teacher estimated that she met with about 15% of her students
during study hall. Importantly, she noticed that the conditionals
unit was the most difficult for students, and was the time they were
most likely to lose interest in the course.

The teacher felt that guided practice was a key to effectively
teaching the content. Firstly, it kept students engaged and attuned
to the multiple facets of each coding concept. Secondly, it allowed
students to experience errors in a supportive environment. As the
teacher encouraged students to debug by comparing their code to
hers, she found that not only did students become more adept at
fixing their errors, but they also became more forthright at help-
ing others. Thirdly, guided practice helped the content seem more
manageable; instead of solving one large challenge, students were
solving multiple smaller challenges sequentially. Fourth, guided
practice allowed the teacher to highlight the code’s logic by first
reasoning about a challenge in English, then converting it to pseu-
docode, and finally converting it to Python code. Lastly, guided
practice helped demystify coding. Students would see the teacher
writing code, see her make mistakes (sometimes intentionally), and
see her thought process as she corrected those mistakes. In the
teacher’s view, this helped students realize that coding has less to
do one’s innate ability to be good at CS, and more to do with the
thought process and reasoning one employs.

In terms of curriculum, the teacher felt that a few components
were particularly important to keep students engaged and effec-
tively teach CS concepts. Firstly, she felt that theming the whole
course around The Martian was crucial to making the course inter-
esting even for students who were uninterested in CS. Secondly,
she felt that the interactive graphics (i.e., turtle bots) unit was
significant, since students enjoyed the creativity associated with
making their own graphics. Further, interactive graphics were more
similar to previous forms of coding the students had experienced
(e.g., moving a turtle on the screen is similar to moving a sprite in
Scratch). Finally, she felt that the robotics unit was important to
engage students and to let them see the real-world impact of their
code. Further, since the robotics unit of the course included plenty
of extra time for students to be creative, it allowed students who
were behind on their work from other units to catch up. This was
especially important since most students’ parents were not familiar
with programming, and therefore they could not get help at home
for unfinished work. In addition to the main activities, the teacher
felt that Code Combat was especially useful for her special needs
students, due to its real-time hints and engaging graphics.

The teacher also noticed that gender played a role in how stu-
dents interacted with the course material. Although the girls tended
to be less excited by the course content, the teacher found that they
participated more in class and were more focused during classroom
activities. On the other hand, boys tended to be more excited by the
course, but were more agitated and easily distracted in class. How-
ever, when they began the robotics unit, boys were more focused

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

813

and interested in the activities. The teacher felt that this was due to
an abundance of energy that boys of that age had, which dissipated
as they stood up and moved around during the robotics unit.

Finally, the teacher felt that being only one trimester long was
an important aspect of the class, because it helped prevent those
who were not interested in CS from giving up on the course. She
also felt that students came into the course expecting to have fun,
since it wasn’t a serious, one-year long class.

5 RESULTS
Every trimester, students took pre- and post-surveys to gauge their
experiences with, and attitudes towards, CS and CT. The surveys
were designed based on Hoegh’s CS attitudes survey [13], short-
ened to account for students’ attention spans, and modified to add
questions that the school district was particularly interested in
investigating. In the end, the survey analyzed seven constructs
– Confidence, Interest, Gender Perception, Usefulness, CS for Fu-
ture, CS Perception, and Problem Solving Approaches – and a few
individual questions. Unless otherwise noted, all questions used
a 5-point Likert scale from “Strongly Disagree” (−2) to “Strongly
Agree” (2). The questions for each construct are listed in Table 1. We
additionally collected demographic data, including students’ gender
and their prior familiarity with Python (a self-reported yes/no).

Overall, we gathered both pre- and post-survey responses from
180 students (87M, 93 F; 29 with prior familiarity in Python), a 71%
completion rate. We first ran Cronbach’s alpha reliability analysis
[4] to determine whether the intended constructs were, in fact,
measuring the same concept (Table 1). All constructs except Use-
fulness were found to be reliable (α ≥ 0.7), and were averaged
into one value each. The Usefulness questions were analyzed in-
dividually. We analyzed each construct using a repeated-measure
ANOVA [9] with a type 2 sum of squares, using time-of-survey
(pre- or post-survey) as the within-subjects factor and gender, prior
familiarity with Python, and the trimester they took the course in
as between-subject factors. Post-hoc testing was done using a t-test
(paired when the independent variable was time-of-survey), with
the Bonferroni correction [7] to address family-wise error rate. For
each factor, we removed students who did not respond to all ques-
tions from both the pre- and post-data. We present all significant
(p < 0.05) main effects and two-factor interaction effects.

Confidence: Time-of-survey had a significant effect on students’
confidence (F (1, 162) = 5.61; p = 1.91e−2), where student confi-
dence was higher in the post-survey (paired difference M = 0.13,
SD = 0.73). Prior familiarity also had a significant effect on confi-
dence (F (1, 162) = 25.26; p = 1.31e−6), where students who had
prior familiarity with Python had a higher confidence (M = 0.88,
SD = 0.76) across both surveys than those who did not (M = 0.14,
SD = 0.81). There was also a significant interaction effect between
gender and time-of-survey (F (1, 162) = 6.83; p = 9.85e−3), with no
significant change in males confidence but a significant increase
in females confidence (p = 2.9e−4; paired difference M = 0.26, SD
= 0.68). However, females began with a significantly lower confi-
dence than males on the pre-survey (p = 5e−3; female M = 0.02,
SD = 0.89; male M = 0.38, SD = 0.91), which means that while
the course did not end with equal confidence across genders, it
significantly lowered the gender gap.

Interest: Time-of-survey had a significant effect on students’
interest (F (1, 163) = 7.53, p = 6.72−3), where student interest
was higher in the post-survey (paired difference M = 0.12, SD
= 0.60). Gender also had a significant effect on students’ interest
(F (1, 163) = 11.46, p = 8.9e−4), where males were more interested
in CS (M = −0.01, SD = 0.98) across both surveys than females (M
= −0.47, SD = 0.90). Prior familiarity also had a significant effect on
students’ interest (F (1, 163) = 16.63, p = 7.1e−5), where students
who had prior familiarity with Python were more interested in CS
(M = 0.35, SD = 1.14) than students who did not (M = −0.36, SD
= 0.88). There was also a significant interaction effect between
trimester-taken and prior familiarity (F (2, 163) = 3.82, p = 2.4e−2),
but given that the differences occurred only amongst the small
group of students with prior familiarity with Python per trimester,
they were likely due to arbitrary scheduling factors.

Gender Perception: The only significant effect was between gen-
der and gender perception and CS (F (1, 157) = 19.95, p = 1.51e−5),
with femalesmore strongly believing that both genderswere equally
capable of pursuing CS (M = 1.47, SD = 0.60) than males (M = 1.08,
SD = 0.73). Notably, taking the course had no significant impact on
students’ views about the relationship between gender and CS. This
may be because students began the course already agreeing with
the idea that females and males are equally capable of pursuing or
studying CS (pre-survey M = 1.31, SD = 0.70).

Usefulness: Time-of-survey did not have a significant impact on
any of the usefulness questions, which indicates that we could do
a better job stressing the importance of CS and CT skills to future
careers. Prior familiarity had a significant effect on responses to
the question “Knowledge of computing will allow me to secure
a good job” (F (1, 166) = 14.88, p = 1.64e−4), with students with
prior familiarity with Python agreeing with the statement more
(M = 1.02, SD = 0.94) across both surveys than students without
it (M = 0.43, SD = 0.94). Prior familiarity also had a significant
effect on responses to the question “My career goals do not require
that I learn computing skills” (F (1, 166) = 7.19, p = 8.07e−3), with
students with prior familiarity with Python disagreeingwith it more
(M= −0.07, SD= 1.32) across both surveys than those without (M=
0.34, SD= 0.98). The remaining significant effects for the usefulness
questions had to do with trimester-taken or the interaction between
trimester-taken and prior familiarity, which may have been the
result of scheduling or subtle ways the teacher changed how she
talked about the usefulness of CS across trimesters.

CS For Future: Time-of-survey had a significant effect on students’
views about the role CS might play in their futures (F (1, 164) =
23.00, p = 3.62e−6), with students in the post-survey being more
inclined to re-engage with CS (paired difference M = 0.25, SD
= 0.70). Gender also had a significant effect on CS For Future
(F (1, 164) = 15.93, p = 9.89e−5), with males being more inclined to
re-engage with CS (M = −0.08, SD = 1.08) across both surveys than
females (M = −0.64, SD = 0.94). Trimester-taken also had a signifi-
cant effect on CS For Future (F (2, 164) = 4.25, p = 1.58e−2), which
again likely had to do with scheduling factors beyond our control.
The final significant main effect was students’ prior familiarity with
Python (F (1, 164) = 14.35, p = 2.13e−4), with students who had
prior familiarity being more open to re-engaging with CS (M = 0.20,
SD = 1.19) than those who didn’t (M = −0.48, SD = 0.98). Finally,
there was a significant interaction effect between prior familiarity

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

814

Construct Questions α

Confidence

• I have little self-confidence when it comes to computing courses.†

0.75• I am confident that I can solve problems by using computer applications. †
• I do not think that I can learn to understand computing concepts. †
• I am comfortable with learning computing concepts.†

Interest

• I hope that my future career will require the use of computer science concepts.†

0.91

• I would voluntarily take additional computer science courses if I were given the opportunity.†
• The challenge of solving problems using computer science does not appeal to me.†
• I think computer science is boring.†
• I like to use computer science to solve problems.†
• (Post: After taking this course,) I am interested in working on my own to teach myself
Python or another programming language.
• Men are more likely to excel in careers that involve computing than women are.†

0.78
Gender • Men and women can both excel in computing courses.†

Perception • Women produce the same quality work in computing as men.†
• Computing is an appropriate subject for both men and women to study.†
• Men are more capable than women at solving computing problems.†

Usefulness
• Developing computing skills will not play a role in helping me achieve my career goals.†

0.65• Knowledge of computing will allow me to secure a good job.†
• My career goals do not require that I learn computing skills.†

CS for • I am considering pursuing a career in computer science.
0.89Future • I am considering taking computer programming courses in high school.

• I am interested in pursuing courses in robotics in high school.
CS • I think computer-programming (Pre: sounds like / Post: can be) fun.

0.70Perception • I think computer programming is easy to learn if I have help.
• I think computer programming is too difficult for me to learn.

Problem • I try to find new ways of doing things even if they might not work.
0.72Solving • When I am successful completing challenges or problems, I want to keep learning more.

Approaches • I try to learn new things even if I might make mistakes.
Table 1: The questions included in each construct the survey investigated, as well as the Cronbach’s alpha value indicating
construct reliability. Text in parenthesis differed between the pre- and post-surveys. † questions came from [13].

and time-of-survey (F (1, 164) = 4.76, p = 3.05e−2), with people
without prior experience in Python significantly increasing their
consideration to re-engage (p = 3e−7; paired difference M = 0.30,
SD = 0.70) while those with prior experience had no significant
change. Therefore, taking the course significantly lessened the gap
between students with and without prior experience in Python in
terms of considering re-engaging with CS in the future.

CS Perception: Time-of-survey had a significant effect on stu-
dents’ perceptions of CS (F (1, 164) = 8.23, p = 4.66e−3), with stu-
dents having a better perception of CS on the post-survey (paired
differences M = 0.15, SD = 0.71). Prior familiarity also had a sig-
nificant effect on students’ perceptions of CS (F (1, 164) = 12.41,
p = 5.53e−4), with students who had prior familiarity with Python
having a better perception of CS (M = 0.99, SD = 0.81) across both
surveys than students who did not (M = 0.43, SD = 0.82).

Problem Solving Approaches: Gender had a significant effect on
students’ problem solving approaches (F (1, 164) = 5.70,p = 1.81e−2),
with males agreeing more with the survey prompts (M = 0.97, SD =
0.66) across both surveys than females (M = 0.75, SD = 0.69). Prior
familiarity with Python also had a significant main effect on stu-
dents’ problem solving approaches (F (1, 164) = 9.83, p = 2.03e−3),
with students who had prior familiarity with Python agreeing more
with the survey prompts (M = 1.17, SD = 0.73) across both surveys

than those who did not (M = 0.80, SD = 0.66). Notably, there was
no significant effect between time-of-survey and problem solving
approaches, which indicates that taking the course likely had little
to no impact on the measured problem solving skills.

Post-Survey Specific Questions: Based on students’ self-reported
assessment of their Python abilities in the post-survey, the course
seems to have been successful in teaching them Python. 84% of
students answered "Yes" to the question "Upon completing this
course, I am familiar with the Python programming language",
compared to 16% for a similar question on the pre-survey. Further,
50% of the students answered "Agree" or "Strongly agree" to the
question "I think I can write code at home now even without the
teacher’s help," 36% answered "Neither agree not disagree," and only
24% answered either "Disagree" or "Strongly disagree." In addition to
self-reported proficiency, we also asked students which components
of the course they wanted to spend more time on. Figure 3 shows
the results, divided by gender. As can be seen, students tended
to prefer the fun activities over the process of sitting down and
learning code; the graphics, Finch, and Trivia Game activities were
very popular across genders, and print/input and conditionals were
very unpopular across genders. The unit on loops was an interesting
exception to this; it was popular across genders, more so for males,
despite being a section where students had to sit down and learn a

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

815

Figure 3: The parts of the course that students wanted to
spend more time on, divided by gender.

new coding construct. The reason for this could lie in the teacher’s
experiences; she found that students quickly grasped the concept of
loops and then moved on to being creative with it by, for example,
creating infinite loops or creating loops that printed their names.

High School Course Requests Finally, we analyzed the number of
students who requested CS courses as their high school elective(s)
from 2015 onwards. High school CS courses included Python, Java,
AP CS Principles, AP CS A, Data Science, and Cybersecurity. Only
AP CS A and Java were offered in 2015-2016, and Data Science
and Cybersecurity are new courses in 2019-2020 that will build
on students’ 8th grade Python knowledge. As Figure 4 Top shows,
we found that that number of 9th graders who requested high
school CS courses doubled after the introduction of the Python
course, and is currently triple of what it was before the 8th grade
course was offered. The number of 10th graders requesting CS
courses two years after the start of the mandatory course also
roughly doubled. This indicates that the 8th grade Python course
increased student’s desire to re-engage with CS in high school.
Figure 4 Bottom shows the number of 9th graders who requested
high school CS courses partitioned by gender. Despite the increase
in the number of students who requested CS courses since the
8th grade course began, the gender proportion stayed roughly the
same (1 female for every 2 males). This indicates that we have
more work to do in the 8th grade Python course and our whole K-8
computational thinking pipeline to close the gender gap in CS.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a one-trimester (30-day) introductory
Python course that has been taught since 2017 as a mandatory 8th
grade class. The goal of the curriculum is to provide all students
baseline experiences with text-based programming and computa-
tional thinking skills that they can further develop and apply in
high school courses. In order to balance skill learning with fun activ-
ities that keep students interested in the class, we themed the class
around Ridley Scott’s The Martian and included various unplugged
activities, creative writing activities (i.e. Mad Libs and Trivia Game),
graphics activities, and robotics activities. Our qualitative results
showed that the fact that this course was mandatory for all 8th
grade students presented unique challenges for the teacher. She
found that a flexible study hall period where she could work one-on-
one with select students was crucial to handling those challenges,
as well as the large variety of activities that appealed to the diverse
student body. Our quantitative results showed significant improve-
ments in students’ confidence and interest in CS, their intent to

Figure 4: Top: The number of students who requested high
school CS courses, by grade level. “Other” refers to either
students who have graduated and therefore no longer have
data stored at the school district, or advanced middle school
students. Bottom: The number of 9th grade students who re-
quested high school CS courses, partitioned by gender.

re-engage with CS in the future, and their perceptions of CS. We
also found that the course significantly lowered the gender gap in
students’ confidence in CS, and the prior experience gap in stu-
dents’ openness to re-engaging with CS. We found that the students
most wanted to spend more time on the graphics, robotics, and
Trivia Game activities, while least wanting to spend more time on
print/input and conditionals. Finally, we found that student requests
to take high school CS courses were much higher amongst students
who took the 8th grade course (triple for 9th graders), although the
gender proportion remained roughly the same.

This course is a work-in-progress; it evolves with the field of
computer science and with our school district’s pathways for K-12
computational thinking. As such, we intend to integrate more data
science into the course – by, for example, having students analyze
the Finch’s light sensor readings to determine whether the Finch is
in a cave or not – as well as discrete math – by, for example, having
students reason about how many colors it takes to color a map of
Mars. In addition, this paper brings up exciting new directions of
research inquiry for the CS education community. For example,
future work could study the long-term impacts of a mandatory CS
course on student outcomes, or develop high-school CT modules
that build upon text-based programming and CT skills that students
would have gained in middle school through this course.

We invite interested school districts and community partners to
contact our school district to learn how they can access, adapt, and
teach this curriculum and other K-12 CS curricula in their classes.

ACKNOWLEDGMENTS
Sincerest thanks to Lynette Lortz and Dawn McCullough for taking
on the adventure of teaching this class, the students for making it
enjoyable, and our friends and colleagues at South Fayette School
District and Carnegie Mellon University, especially the Teknowl-
edge team, for their support, guidance, and collaboration.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

816

REFERENCES
[1] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From

Scratch to &Ldquo;Real&Rdquo; Programming. Trans. Comput. Educ. 14, 4, Article
25 (Feb. 2015), 15 pages. https://doi.org/10.1145/2677087

[2] Caelin Bryant, Yesheng Chen, Zhen Chen, Jonathan Gilmour, Shyamala Gu-
midyala, Beatriz Herce-Hagiwara, Annabella Koures, Seoyeon Lee, JamesMsekela,
Anh Thu Pham, et al. 2019. AMiddle-School Camp Emphasizing Data Science and
Computing for Social Good. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education. ACM, 358–364.

[3] Philip Sheridan Buffum, Kimberly Michelle Ying, Xiaoxi Zheng, Kristy Elizabeth
Boyer, Eric N Wiebe, Bradford W Mott, David C Blackburn, and James C Lester.
2018. Introducing the Computer Science Concept of Variables in Middle School
Science Classrooms. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. ACM, 906–911.

[4] Lee J Cronbach. 1951. Coefficient alpha and the internal structure of tests.
psychometrika 16, 3 (1951), 297–334.

[5] Jennifer L Cross, Emily Hamner, Lauren Zito, and Illah Nourbakhsh. 2017. Student
outcomes from the evaluation of a transdisciplinary middle school robotics
program. In 2017 IEEE Frontiers in Education Conference (FIE). IEEE, 1–9.

[6] Amber Dryer, Nicole Walia, and Ankur Chattopadhyay. 2018. A Middle-School
Module for Introducing Data-Mining, Big-Data, Ethics and Privacy Using Rapid-
Miner and a Hollywood Theme. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education. ACM, 753–758.

[7] Olive Jean Dunn. 1958. Estimation of the means of dependent variables. The
Annals of Mathematical Statistics (1958), 1095–1111.

[8] Russell Feldhausen, Joshua Levi Weese, and Nathan H Bean. 2018. Increasing Stu-
dent Self-Efficacy in Computational Thinking via STEM Outreach Programs. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education.
ACM, 302–307.

[9] Andy Field, Jeremy Miles, and Zoë Field. 2012. Discovering statistics using R. Sage
publications.

[10] Shuchi Grover, Satabdi Basu, and Patricia Schank. 2018. What we can learn about
student learning from open-ended programming projects in middle school com-
puter science. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 999–1004.

[11] Shuchi Grover, Patrik Lundh, and Nicholas Jackiw. 2019. Non-programming
activities for engagement with foundational concepts in introductory program-
ming. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. ACM, 1136–1142.

[12] Cecily Heiner. 2018. A Robotics Experience for All the Students in an Elementary
School. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. ACM, 729–734.

[13] Andrew Hoegh and Barbara M Moskal. 2009. Examining science and engineer-
ing students’ attitudes toward computer science. In 2009 39th IEEE Frontiers in
Education Conference. IEEE, 1–6.

[14] Chrystalla Mouza, Alison Marzocchi, Yi-Cheng Pan, and Lori Pollock. 2016.
Development, implementation, and outcomes of an equitable computer science
after-school program: Findings from middle-school students. Journal of Research
on Technology in Education 48, 2 (2016), 84–104.

[15] Farzana Rahman. 2018. From App Inventor to Java: Introducing Object-oriented
Programming to Middle School Students Through Experiential Learning. In 2018
ASEE Annual Conference & Exposition. ASEE Conferences, Salt Lake City, Utah.
https://peer.asee.org/30539.

[16] Dir. Ridley Scott, Prod. Drew Goddard, Teresa Kelly, Simon Kinberg, et al. 2015.
The Martian. 20th Century Fox.

[17] Jennifer Tsan, Kristy Elizabeth Boyer, and Collin F Lynch. 2016. How early does
the CS gender gap emerge?: a study of collaborative problem solving in 5th
grade computer science. In Proceedings of the 47th ACM technical symposium on
computing science education. ACM, 388–393.

Paper Session: Blocks SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

817

https://doi.org/10.1145/2677087

	Abstract
	1 Introduction and Prior Work
	2 Setting
	3 Curriculum Design
	4 Teacher Experiences
	5 Results
	6 Conclusion and Future Work
	Acknowledgments
	References

