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ABSTRACT 
Despite decades of research on personal physically assistive robots 
for people with motor impairments, deployments of such robots 
are still few. Part of the reason is that every user’s needs, environ-
ments, and care routines are unique, making it difcult to develop 
a sufciently customized and robust robot. I present past and on-
going research with the ultimate aim of enabling a robot-assisted 
feeding system to feed a meal to any user, in any environment, with-
out researcher intervention, in a way that aligns with the user’s 
preferences. Our key insight is that the robot and user form a joint 
human-robot system that is working together to feed the user. Thus, 
we can achieve deployable autonomy by providing the user with 
intuitive and transparent controls to: customize the robot to their 
needs and environment; and make the robot’s execution robust. 

CCS CONCEPTS 
• Computer systems organization → Robotic autonomy; • 
Human-centered computing → Accessibility technologies. 
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1 INTRODUCTION AND MOTIVATION 
Research since the 1980s [24] has focused on developing personal 
physically assistive robots for people with motor impairments. 
Other than a few exceptions [8, 9, 13, 22], such robots tend not 
to be deployed outside the lab. Part of the reason is that every 
user’s needs, environments, and care routines are unique, making 
it difcult to develop a sufciently customized and robust robot. 

In this work, I focus on robot-assisted feeding (RAF) as a case 
study for making physically assistive robots sufciently customized 
and robust to work across diverse users and environments. Our 
goal is to enable an RAF system to feed a meal to any user, in any 
environment, without researcher intervention, in a way that aligns 
with their preferences. I investigate the following questions: 
RQ1: Users’ Needs Assessment: What features do participants desire 

from their RAF system? [Completed] 
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RQ2: Customizability: How can an RAF system customize to users’ 
environments and preferences? [Ongoing] 

RQ3: Robustness: How can an RAF system feed users without re-
searcher intervention? [Ongoing] 

Our key insight is that because the user is co-located with the ro-
bot, desires control over it, and has full alignment with its goals, we 
can view them as a joint human-robot system. Thus, we can achieve 
deployable autonomy by giving the user intuitive and transparent 
controls to: (a) customize the robot to their needs and environment; 
and (b) make the robot robust to of-nominal scenarios. 

2 USERS’ NEEDS ASSESSMENT (RQ1) 
To investigate RQ1, we worked with a community researcher1 

to investigate: (a) the challenges people with motor impairments 
face during social dining; and (b) how we should design a robot-
assisted feeding system to enable meaningful social dining2 [17]. 
Specifcally, we conducted interviews with 10 participants with 
diverse motor impairments. We discussed participants’ current 
social dining practices, showed them videos of an RAF system being 
used in social settings (Fig 1a), and discussed on how participants’ 
would like RAF systems to be designed. Fig 1b shows illustrative 
quotes for two design principles that emerged from this work. 

A key insight is that users seek personalization and consis-
tency in their feeding experience. This is motivated by their needs 
(e.g., small bites to prevent choking), preferences (e.g., wanting to be 
fed from their dominant side), and environments (e.g., wanting to 
be fed quickly at home and leisurely when socializing). Some care-
givers provide personalization, but the reality of multiple caregivers 
precludes consistent personalization. This motivates RQ2. 

Another key insight is that users desire control over their 
RAF system. This is partly due to a learnt resignation to technology 
errors (Fig 1b.C). It is also due to the expectation that situations will 
arise where the technology should deviate from nominal behavior, 
and users are best-suited to address that: “If I’m ready to eat and 
then someone starts talking to me, I’d want to [have the robot] wait 
until that person fnishes” (P1). This insight reveals that human-in-
the-loop control can be a way to address robustness in RQ3. 

3 CUSTOMIZABILITY (RQ2) 
Without customizing to users’ needs and environments, an RAF 
system will not work. Consider the following customization realms: 
A the bite transfer, e.g., some users can only chew from a partic-

ular side; some users can’t rotate their necks. 
B the spatial arrangement of the user, robot, and plate, e.g., 

some wheelchairs don’t ft under tables so users have to sit 
sideways relative to the plate; some users need to be fed in bed. 

1In community-based participatory research (CBPR), academics researchers work 
equitably with community members throughout all research stages. CBPR is used in 
health [12, 26] and assistive technology [2, 6, 15, 17] research.
2Needs assessments that are not specifc to social dining can be found in [3, 14, 19]. 
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Figure 1: (a) The robot-assisted feeding (RAF) system being used during social dining [17]. (b) Users want to customize and 
control their RAF system [17]; (c) The RAF system consists of a wheelchair-mounted robot arm, a web app, and the user. (d) The 
author’s past work enabled the system to acquire food like jello, sandwich bites, and mashed potatoes with ≥ 80% accuracy [7]. 

One approach to customization has the robot collect data from 
users and learn parameters of its behavior that it thinks align with 
user preferences (i.e., robot-driven customization) [5]. Although 
this has shown promising results, robot-driven customization can 
leave users feeling disempowered or insufciently included [1]. 
Our key insight is that users are experts at what they want; by 
providing intuitive knobs to directly modify robot parameters, we 
can empower them to customize their RAF system (i.e., user-driven 
customization). The key challenges to developing user-driven cus-
tomization are: (1) identifying robot parameters that are expressive 
enough to capture user preferences, while not being unintuitive; 
(2) providing sufcient transparency into how parameters change 
robot behavior so users can make informed customization decisions. 

As an initial investigation, we ran an online pilot study (n=11) 
to understand the features of robot arm motion that impact par-
ticipants’ bite transfer preferences. This revealed the importance 
of the robot not blocking the user’s visual feld, and the diversity 
of preferences—e.g., some wanted it to approach from the front 
whereas others preferred the side. To capture these preferences, I 
propose allowing users to customize the confguration the robot 
arm takes before transfer. Since the robot moves in a straight line 
to the mouth after that, customizing that confguration will allow 
users to refect diverse preferences: approaching from a desired 
angle, avoiding their visual feld, etc. I then propose running a user 
study comparing user-driven and robot-driven customization. The 
user-driven approach will be informed by “Designing for Tinkerabil-
ity” [21] to ensure intuitive convergence to a desired confguration, 
and the robot-driven approach will be informed by active learning 
methods [5, 20]. My hypothesis is that user-driven customization 
will allow users to converge to their preferred robot behavior faster, 
and allow them to capture preferences that may be hard to model. 

4 ROBUSTNESS (RQ3) 
For users to use RAF systems without researcher intervention, the 
system must to be robust to the of-nominal scenarios that arise 
outside the lab. Thus, we worked with the community researcher to 
identify of-nominals that can arise during robot-assisted feeding. 
This resulted in over 50 of-nominals, including situations where 
the user wants the robot to deviate from its nominal behavior (e.g., 
they are about to sneeze and want the robot to wait), the robot 
fails to do an autonomous behavior (e.g., detect the user’s face), or 
the real environment doesn’t align with the robot’s assumptions 
(e.g., the caregiver moves the plate while serving food). While 
some of-nominals can be addressed through autonomous recovery 
behaviors, this faces the catch-22 that those recovery behaviors can 
also fail. Instead, we propose designing a human-in-the-loop system 

that empowers users to navigate the robot through of-nominal 
scenarios to restore nominal functioning. 

Insight #1: Human Control By Design Many human-in-the-
loop systems are “robot control” by design, where the robot con-
trols system execution and waits for human inputs at pre-defned 
times [4, 18, 23, 25]. In contrast, we develop a “human control” by 
design system, where the robot exposes an API of modular actions 
(e.g., “acquire food,” “move to mouth”) and the user interface—a 
web app (Fig 1c)—invokes each action when the user specifes. This 
provides the user wide latitude to decide which action to invoke, 
when to invoke it, and whether to preempt the executing action. 

Insight #2: Autonomous Safety Checks User control is one 
part of making the system robust, but it takes users time to de-
tect and respond to of-nominals. For the most safety-critical of-
nominals—collision with the environment or user—we also run 
faster autonomous safety checks. These checks are implemented in 
all system layers: a dynamic collision map [11] in the planning layer 
to avoid unmodeled obstacles (e.g., assistive technology around the 
user’s face); force-gated controllers in the execution layer that shut 
down upon unexpectedly large forces; and a software watchdog 
that terminates robot motion if any safety subsystem dies. 

Insight #3: Transparency for Exercising Control Autonomous 
system components can fail; empowering users to resolve those 
requires transparency into system functionality and the ability to 
execute recovery behaviors. Consider when the user sees the ro-
bot approach an obstacle (e.g., a drink). Users need transparency 
into how soon the robot will stop to assess whether to preempt 
it. Once preempted, re-invoking the action may cause the same 
issue; instead, users need fallback teleoperation control to move 
the robot around the obstacle. Overall, users need the transparency 
to understand system problems and the control to address them. 

Evaluation System development is mostly complete; the frst 
two insights are implemented and the third is in-progress. I pro-
pose evaluating the complete RAF system with people with motor 
impairments in varied environments, e.g., a cafeteria, at home in 
front of a TV, sitting on their bed. One metric will be the number 
of researcher interventions. Other metrics will be time per bite, 
user’s cognitive workload during eating [10], and user’s system us-
ability rating [16]. My hope is that with self-guided customization 
and in-app controls, users can have the robot feed them without 
researcher intervention in a way that aligns with their preferences. 
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