Amal Nanavati

amaln@cs.uw.edu | Personal Website | LinkedIn | Github | Google Scholar

Research Interests

Human-Robot Interaction; Physically Assistive Robots; Human Modeling; User-Centered Design; Robot Learning

Education

Sep 2019	University of Washington Seattle, USA	Selected Coursework:
- Present	PhD Student, Computer Science and Engineering	 CSE 599W Reinforcement Learning
	Advisers: Dr. Siddhartha Srinivasa, Dr. Maya Cakmak	 CSE 5991 Interactive Learning
Sep 2018	Kyoto University Kyoto, Japan	 CSE 599M Robustness in ML
- July 2019	Fulbright Fellow	 10-812 Never-Ending Learning
	Advisers: Dr. Takayuki Kanda, Dr. Dražen Brščić	 10-701 Introduction to ML
Aug 2014	Carnegie Mellon University Pittsburgh, USA	• 15-451 Algorithm Design and Analysis
- May 2018	Bachelor of Science (BS) Computer Science	 15-440 Distributed Systems
	Additional Major: Global Studies University Honors	 HCDE 548B Critical Tech Practice
	Advisers: Dr. Aaron Steinfeld, Dr. Bernardine Dias	 CSE 599P Computer Ethics

Publications

Full Papers

- P.9 Ethan K. Gordon^{*}, **Amal Nanavati**^{*}, Ramya Challa, Bernie Hao Zhu, Taylor A. Kessler Faulkner, and Siddhartha S. Srinivasa. Towards General Single-Utensil Food Acquisition with Human-Informed Actions. Conference on robot learning (CoRL23).
- P.8 Amal Nanavati^{*}, Patrícia Alves-Oliveira^{*}, Tyler Schrenk, Ethan K. Gordon, Maya Cakmak, and Siddhartha S. Srinivasa. Design principles for robot-assisted feeding in social contexts. *Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (HRI23).*

Best Design Paper Award

- P.7 Amal Nanavati, Nick Walker, Lee Taber, Christoforos Mavrogiannis, Leila Takayama, Maya Cakmak, and Siddhartha S. Srinivasa. Not All Who Wander Are Lost: A Localization-Free System for In-The-Wild Mobile Robot Deployments. Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction (HRI22).
- P.6 Michael Murray, Nick Walker, **Amal Nanavati**, Patrícia Alves-Oliveira, N. Filippov, Allison Sauppe, Bilge Mutlu, and Maya Cakmak. Learning backchanneling behaviors for a social robot via data augmentation from human-human conversations. *Conference on robot learning (CoRL22)*.
- P.5 Amal Nanavati, Christoforos Mavrogiannis, Kevin Weatherwax, Leila Takayama, Maya Cakmak, and Siddhartha S. Srinivasa. Modeling Human Helpfulness with Individual and Contextual Factors for Robot Planning. Proceedings of Robotics: Science and Systems 2021 (RSS21).
- P.4 Amal Nanavati, Malcolm Doering, Dražen Brščić, and Takayuki Kanda. Autonomously Learning One-To-Many Interaction Logic from Human-Human Interaction Data. Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI20).
- P.3 Amal Nanavati, Aileen Owens, and Mark Stehlik. Pythons and Martians and Finches, Oh My! Lessons Learned from a Mandatory 8th Grade Python Class. Proceedings of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE20).
- P.2 Amal Nanavati, Xiang Zhi Tan, Joe Connolly, and Aaron Steinfeld. Follow The Robot: Modeling Coupled Human-Robot Dyads During Navigation. Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS19).
- P.1 Amal Nanavati, M. Bernardine Dias, and Aaron Steinfeld. Speak Up: A Multi-Year Deployment of Games to Motivate Speech Therapy in India. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI18).

Short Papers

- S.2 Amal Nanavati, Patrícia Alves-Oliveira, Tyler Schrenk, Ethan K. Gordon, Maya Cakmak, and Siddhartha S. Srinivasa. Unintended Failures of Robot-Assisted Feeding in Social Contexts. Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (HRI23). (Video, presented at HRI23)
- S.1 Amal Nanavati, Xiang Zhi Tan, and Aaron Steinfeld. 2018. Coupled Indoor Navigation for People Who Are Blind. Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI18).

Selected Research Experiences

July 2021 - present	 Robot-Assisted Feeding for People with Motor Impairments Seattle, WA System design and implementation for a robot arm that helps feed people with motor impairments. Focusing on developing smooth human-robot interactions with the system, including non-threatening motions, a customizable bite transfer, and human-in-the-loop techniques to improve system robustness. Developed models of how humans acquire food in order develop bite acquisition primitives for the robot. 	
Sep 2019	Robots Asking Humans for Help: Models and Frameworks Seattle, WA	
- July 2021	• Developed a model of human help-giving behavior, which enabled a robot to perform 1.5x better than state-of-the-art approaches by effectively asking for help.	
	• Implemented help-seeking behavior on a mobile robot, which enabled error-free navigation for 32 hours.	
Sep 2018	Learning Multiparty Interaction Logic from Human Data Kyoto, Japan	
- July 2019	 Designed & implemented an attention-based deep neural network that takes in multimodal data on customer actions and outputs how a robot shopkeeper should respond. 	
	• The network outperformed state-of-the-art approaches by up to 30% in terms of social appropriateness.	
Aug 2016	Assistive Robots for Blind Travelers Pittsburgh, PA	
- Aug 2018	 Developed, user tested, and implemented interaction modalities and autonomous navigation skills for a mobile robot to guide blind users. 	
	• Designed a planner that simulates how users follow robots, bringing users 1.8x closer to their goal than a planner that only accounted for the robot.	

Selected Industry Experiences

Jan 2023	User Experience Research Intern Zipline
- Apr 2023	• Investigated user perceptions of droid motion during drone delivery. Worked with the planning and controls teams to integrate research insights into their algorithms.
	 Extended a simulation environment to generate realistic drone delivery videos.
	• Prototyped and evaluated multiple ways for workers to scan packages before loading them into the droid.
May 2016	Software Engineering Intern Thumbtack
- Aug 2016	• Designed & implemented a Go service to send push notifications to Thumbtack's mobile apps, as well as
	data analytics for that service.
	 Performed concurrent database migrations for millions of items between SQL, DynamoDB, and S3.

Selected Teaching Experiences

Jun 2022	Instructor, CSE 416 Introduction to Machine Learning Seattle, WA	
- Aug 2022	 Taught 80+ undergraduate and graduate students machine learning (ML), including deep learning, regression, matrix factorization, and social considerations in ML. Instructor Evaluation: 4.7/5.0. Managed a team of 5 TAs to prepare and teach sections, respond to student questions, and grade. 	
April 2016	Teknowledge Co-founder, President	
- Aug 2018	 Taught afterschool computer science (CS) at under-resourced public schools and community centers. Developed intro Python (6th - 11th grade) and inquiry-based machine learning curricula (10th - 12th grade). Advised teachers and admin as they developed a mandatory 8th grade Python class based on our curriculum. 	
	• Managed communications, interactions, training for 25 mentors, 130+ students, and 7 community partners.	

Selected Course Projects

Spring 2020	CSE599W Reinforcement Learning (Project Write-up)
	 Developed a taxonomy of the different types of human-help queries a robot can make.
	 Created an OpenAI Gym environment to simulate a mobile robot asking users for help.
	• Demonstrated that reinforcement learning (Trust Region Policy Optimization) learnt the tradeoffs between different human help queries (e.g., remote vs. in-person help, queries with different human costs, etc.).
Spring 2018	 10-812 Architectures for Never-Ending Learning (Project Write-up) Investigated whether imitation learning (IL) can improve lifelong multi-agent reinforcement learning.
	 Developed IL agents that track other agents skins and learn by observing the most skined agents. Demonstrated that learning by imitation combined with one's own experience improves learning speed.
Fall 2017	 16-831 Statistical Techniques in Robotics (Project Write-up) Used reinforcement learning (DDPG—Deep Deterministic Policy Gradient) to teach a simulated quadrotor to follow a sequence of waypoints. Improved the system with expert demonstrations using Max-Margin Inverse Reinforcement Learning and DDPG from Demonstration.

Honors and Awards

2023	HRI23 Outstanding Reviewer	2018 - 2019	Fulbright Fellowship (Japan)
2021 -	NSF GRFP Fellow	Fall 2017	Phi Beta Kappa
2019 - 2020	Faithful Steward Endowed Fellowship	Spring 2018	K&L Gates Prize

Research Mentorship

- Haya Bolotski, Autumn 2022- (High School, Holy Names Academy '24)
- Atharva Kashyap, Spring 2022- (Undergraduate, University of Washington '24)
- Raida Karim, Autumn 2022-Aummer 2023 (Post-Bachelors, University of Washington '22)
- Mridula Venkatesan, Summer-Winter 2020 (Undergraduate, University of Washington '23)
- Nikita Filippov, Spring-Summer 2020 (Undergraduate, University of Washington '20)
- Joe Connolly, Summer 2018 (Undergraduate, Yale University '21)

Skills

Advanced:	ROS, Python, C/C++, LATEX	
Intermediate:	PyTorch, TensorFlow, ReactJS, Flask, R, Java, Go, AWS	
Basic:	Matlab, JavaScript, Objective-C, Mathematica	